metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

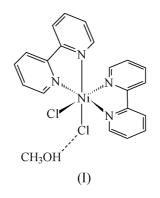
Frédéric Georges Fontaine

Département de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

Correspondence e-mail: fontaifr@yahoo.ca

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.047 wR factor = 0.101 Data-to-parameter ratio = 14.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

cis-Bis(2,2-bipyridine)dichloronickel(II) methanol solvate

The title complex, $[NiCl_2(bipy)_2].CH_3OH$, where bipy is 2,2bipyridine ($C_{10}H_8N_2$), consists of an Ni atom coordinated to two *cis* chlorides and two bidentate bipyridines. One molecule of methanol is hydrogen bonded to one of the two inequivalent chlorides.

Comment

In the course of our studies, the synthesis of $[Ni(bi-py)_2Cl_2].CH_3OH$, (I), was carried out using a method previously reported for the synthesis of Ni(pyridine)_4Cl_2 (Long & Clarke, 1978). The molecule adopts a pseudo-octa-hedral geometry with N-Ni-N bite angles of 77.75 (14) and 78.00 (14) Å, and *cis* angles between 87.84 (10) and 97.58 (13) Å; *trans* angles are close to linearity. The structure of this complex (Fig. 1) is similar to the two structures of Ni(bipy)_2Cl_2 previously reported.

If CH₃CN is used for recrystallization (Ferbinteanu *et al.*, 1998), two water molecules make strong hydrogen bonds with the chlorides. The structure of the dimethylformamide (DMF) solvate was also published the same year (Hipler *et al.*, 1998). In both published structures, a C₂ axis is observed on the nickel making both chlorides and bipy ligands equivalent by symmetry. Our studies revealed that the Ni–Cl bond lengths are quite different (more than 20σ) from one another. We believe that this is due to a methanol being hydrogen bonded only to Cl1 [3.276 (3) *versus* 3.467 (3) Å]. Also unexpected is that one of the bipy shows both of its Ni–N lengths [2.073 (3) and 2.0077 (3) Å] shorter than the other bipy [2.084 (3) and 2.100 (4) Å].

Experimental

A solution of NiCl₂.6H₂O (2 g) in methanol (25 ml) was added to a solution of 2,2-bipyridine (2.75 g) in methanol. This mixture was agitated for 1 h and concentrated under vacuum to a volume of 10 ml.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Received 8 May 2001

Online 15 June 2001

Accepted 11 May 2001

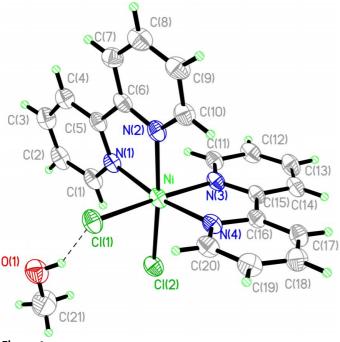


Figure 1

The structure of the title complex showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Slow evaporation of the solvent in air allowed the formation of green crystals.

Crystal data

Data collection

Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: by integration (*ABSORP* in *NRCVAX*; Gabe *et al.*, 1989) $T_{min} = 0.432$, $T_{max} = 0.593$ 22 288 measured reflections 3908 independent reflections 2054 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.101$ S = 1.013908 reflections 265 parameters H-atom parameters constrained Cu $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 20.0-23.0^{\circ}$ $\mu = 3.90 \text{ mm}^{-1}$ T = 293 (2) K Block, dark green $0.23 \times 0.23 \times 0.16 \text{ mm}$

 $R_{int} = 0.073$ $\theta_{max} = 69.9^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 34$ 5 standard reflections frequency: 60 min intensity decay: none

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.04P)^2] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.31 \text{ e } \text{Å}^{-3} \\ \Delta\rho_{min} = -0.65 \text{ e } \text{Å}^{-3} \\ &\text{Extinction correction: } SHELXL96 \\ &(\text{Sheldrick, 1996}) \\ &\text{Extinction coefficient: } 0.00066 \ (5) \end{split}$$

Table	1		
-------	---	--	--

Selected geometric parameters (Å, °).

Ni-N4	2.073 (3)	Ni-N2	2.100 (4)
Ni-N3	2.077 (3)	Ni-Cl1	2.3940 (13)
Ni-N1	2.084 (3)	Ni-Cl2	2.4213 (13)
N4-Ni-N3	78.00 (14)	N1-Ni-Cl1	88.60 (10)
N4-Ni-N1	170.07 (14)	N2-Ni-Cl1	87.84 (10)
N3-Ni-N1	97.58 (13)	N4-Ni-Cl2	94.06 (10)
N4-Ni-N2	93.37 (14)	N3-Ni-Cl2	88.70 (10)
N3-Ni-N2	91.44 (13)	N1-Ni-Cl2	94.73 (11)
N1-Ni-N2	77.75 (14)	N2-Ni-Cl2	172.43 (11)
N4-Ni-Cl1	95.58 (10)	Cl1-Ni-Cl2	92.87 (5)
N3-Ni-Cl1	173.48 (10)		

Table 2	_	
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$			
$\begin{array}{c} O1 - H1A \cdots Cl1 \\ O1 - H1A \cdots Cl2 \end{array}$	0.82 0.82	2.63 2.78	3.276 (3) 3.467 (3)	137 143			

H atoms were constrained to the parent site using a riding model (C–H 0.93–0.96 and O–H 0.82 Å). The isotropic displacement parameters, $U_{\rm iso}$, were adjusted to a value 50% higher than that of the parent site (methyl and OH) and 20% higher (others).

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRC-2* and *NRC-2A* (Ahmed *et al.*, 1973); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL96* (Sheldrick, 1996); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL96*.

The financial support from the Natural Sciences and Engineering Research Council of Canada and from the Fonds FCAR du Ministère de l'Éducation du Québec is gratefully acknowledged.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). NRC Crystallographic Computer Programs for the IBM/360. Accession Nos. 133– 147. J. Appl. Cryst. 6, 309–346.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Ferbinteanu, M., Cimpoesu, F., Andruh, M. & Rochon, F. D. (1998). *Polyhedron*, 21, 3671–3679.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.

- Hipler, B., Doring, M., Dubs, C., Gorls, H., Hubler, T. & Uhlig, E. (1998). Z. Anorg. Allg. Chem. 624, 1329–1335.
- Long, G. J. & Clarke, P. J. (1978). Inorg. Chem. 17, 1394-1401.

Sheldrick, G. M. (1996). SHELXL96. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.